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Perfect information games

State space of Tic Tac Toe

Players know their exact position in the state space

Perfect information games can be solved in PTIME using bo�om-up
traversal. [Zermelo’1913]
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Toy Card Game

Players Red and Black, each gets a suit privately from ♥, ♣, ♦, ♠
matching player’s color. Red plays first.

Chance

♥ ♣ ♥ ♠ ♦ ♣ ♦ ♠

State space

Imperfect information : same knowledge in some states
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Solving imperfect information games is NP-hard [Koller, Megiddo’92]

There are “simple” classes of imperfect information games
solvable in PTIME

Our contributions in this work

♠ New PTIME solvable class of imperfect information games by
transformation to equivalent simpler games

♠ Generalize transformation technique to broader class of games
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Games in Extensive form

Player nodes : Max and Min
Random node : Chance

Toy Poker : A random suit from ♥, ♣, ♦, ♠ is privately dealt to Max

chance
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Actions : AMax = {raise, check, raise, check},AMin = {call, fold}
Information sets : IMax = {−−,−−}, IMin = {−−}

Zero-sum : Min pays Max at leaves
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Strategies
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σ: Max raises and checks with probability 1
2

at ♥♦ and always raises at
♣♠
τ : Min always folds

Expected Payo� : E(σ, τ)
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Optimal Solution

Maxmin value

maxmin = max
σ

min
τ

E(σ, τ)

Decision Problem

Two-player : Given a two-player game and threshold λ, is the
maxmin value over behavioral strategies at least λ?

One-player : Given a one-player game and thereshold λ, is
the maximum value over behavioral strategies at least λ?

Complexity depends on player’s recall.



Optimal Solution

Maxmin value

maxmin = max
σ

min
τ

E(σ, τ)

Decision Problem

Two-player : Given a two-player game and threshold λ, is the
maxmin value over behavioral strategies at least λ?

One-player : Given a one-player game and thereshold λ, is
the maximum value over behavioral strategies at least λ?

Complexity depends on player’s recall.



Optimal Solution

Maxmin value

maxmin = max
σ

min
τ

E(σ, τ)

Decision Problem

Two-player : Given a two-player game and threshold λ, is the
maxmin value over behavioral strategies at least λ?

One-player : Given a one-player game and thereshold λ, is
the maximum value over behavioral strategies at least λ?

Complexity depends on player’s recall.



Optimal Solution

Maxmin value

maxmin = max
σ

min
τ

E(σ, τ)

Decision Problem

Two-player : Given a two-player game and threshold λ, is the
maxmin value over behavioral strategies at least λ?

One-player : Given a one-player game and thereshold λ, is
the maximum value over behavioral strategies at least λ?

Complexity depends on player’s recall.



Optimal Solution

Maxmin value

maxmin = max
σ

min
τ

E(σ, τ)

Decision Problem

Two-player : Given a two-player game and threshold λ, is the
maxmin value over behavioral strategies at least λ?

One-player : Given a one-player game and thereshold λ, is
the maximum value over behavioral strategies at least λ?

Complexity depends on player’s recall.



Perfect recall

Player remembers his own past history of actions

inf (u) = inf (v) ⟹ histMax(u) = histMax(v)
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Action-loss recall

Loss of perfect recall→ distinct histories split at some past info set
with distinct actions

inf (u) = inf (v) ⟹
histMax(u) = histMax(v)

or
histMax(u) = sa1s1, histMax(v) = sa2s2 where a1, a2 action at same info set
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information but same history
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Absentmindedness

Forgets if the same decision point was seen before

∃u, v , inf (u) = inf (v) and histMax(u) <prefix histMax(v)
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Previous Complexity Picture

Perfect
Recall

A-loss
Recall

Non-absentminded Absentminded

Increasing complexity

PTIME PTIME NP-complete ∃R-complete
[K,M’92] [K,K’95] [K,M’92] [G,P,S’20]

Complexity of one-player games

Our work : Finer complexity picture for non-absentminded
games



Previous Complexity Picture

Perfect
Recall

A-loss
Recall

Non-absentminded Absentminded

Increasing complexity

PTIME PTIME NP-complete ∃R-complete
[K,M’92] [K,K’95] [K,M’92] [G,P,S’20]

Complexity of one-player games

Our work : Finer complexity picture for non-absentminded
games



Previous Complexity Picture

Perfect
Recall

A-loss
Recall

Non-absentminded Absentminded

Increasing complexity

PTIME PTIME NP-complete ∃R-complete
[K,M’92] [K,K’95] [K,M’92] [G,P,S’20]

Complexity of one-player games

Our work : Finer complexity picture for non-absentminded
games



Our contribution

Perfect
Recall

A-loss
Recall

Shu�led
A-loss

NAM Absentminded

PTIME PTIME PTIME NP-C ∃R-complete

Equivalent A-loss recall game

Every non-absentminded game can be trans-
formed into equivalent A-loss recall game.

Caveat : Exponential blow-up in size
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Core idea

Assigining variables to actions for a behavioral strategy gives
symbolic payo� polynomial

Games are equivalent if symbolic polynomials are same



Shu�led A-loss Recall
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A-loss recall span

Leaf polynomials of input game are linear combinations of leaf
polynomials of transformed game

Set of polynomials {xa, 1 − xa} × {xb, 1 − xb} × {xc, 1 − xc} forms
basis of vector space of all multilinear polynomials over {xa, xb, xc}
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Summary

Perfect
Recall

A-loss
Recall

Shu�led
A-loss

NAM Absentminded

PTIME PTIME PTIME NP-C ∃R-complete

Equivalent A-loss recall game

Also extends to two-player games where Max has perfect recall
and Min is non-absentminded



Future directions

♠ Implications on practice
♠ Complexity of computing minimal A-loss recall Span

Thank You


