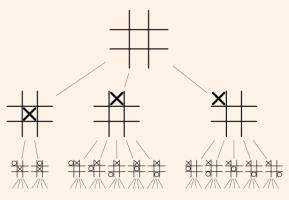
Simplifying Imperfect Recall Games

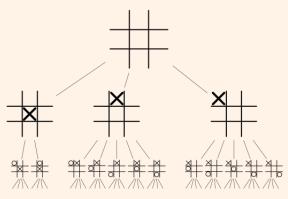
Hugo Gimbert Soumyajit Paul B. Srivathsan LaBRI, CNRS, University of Bordeaux University of Liverpool Chennai Mathematical Institute

Perfect information games



State space of Tic Tac Toe

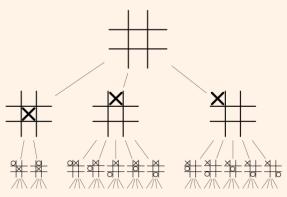
Perfect information games



State space of Tic Tac Toe

Players know their exact position in the state space

Perfect information games



State space of Tic Tac Toe

Players know their exact position in the state space

Perfect information games can be solved in PTIME using bottom-up traversal. [Zermelo'1913]

Few more perfect information games...

Chess

Go

Few more perfect information games...

Chess

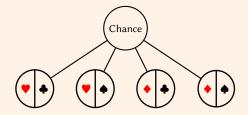
Go

Next : Games with imperfect information

Toy Card Game

Toy Card Game

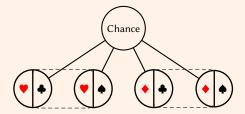
Players **Red** and **Black**, each gets a suit privately from \blacklozenge , \blacklozenge , \blacklozenge , \blacklozenge , matching player's color. **Red** plays first.



State space

Toy Card Game

Players **Red** and **Black**, each gets a suit privately from \P , \blacklozenge , \diamondsuit , \blacklozenge matching player's color. **Red** plays first.

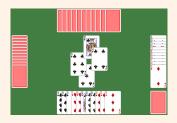


State space

Imperfect information : same knowledge in some states

Some games with imperfect information...

Poker



Bridge

Some games with imperfect information...

Poker

Bridge

Can we solve imperfect information games efficiently?

There are "simple" classes of imperfect information games solvable in PTIME

There are "simple" classes of imperfect information games solvable in PTIME

Our contributions in this work

There are "simple" classes of imperfect information games solvable in PTIME

Our contributions in this work

• New PTIME solvable class of imperfect information games by transformation to equivalent simpler games

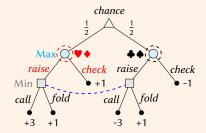
There are "simple" classes of imperfect information games solvable in PTIME

Our contributions in this work

• New PTIME solvable class of imperfect information games by transformation to equivalent simpler games

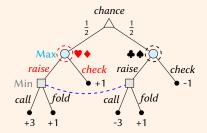
♦ Generalize transformation technique to broader class of games

Player nodes : $Max \bigcirc$ and $Min \square$ Random node : Chance \triangle



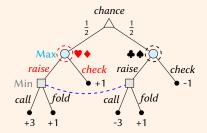
Player nodes : $Max \bigcirc$ and $Min \square$ Random node : Chance \triangle

Toy Poker : A random suit from $\mathbf{\Psi}, \mathbf{\Phi}, \mathbf{\Phi}, \mathbf{\Phi}$ is privately dealt to Max



Player nodes : $Max \bigcirc$ and $Min \square$ Random node : Chance \triangle

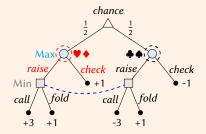
Toy Poker : A random suit from \P , \blacklozenge , \diamondsuit , \blacklozenge is privately dealt to Max



Actions : $A_{Max} = \{ raise, check, raise, check \}, A_{Min} = \{ call, fold \}$

Player nodes : $Max \bigcirc$ and $Min \square$ Random node : Chance \triangle

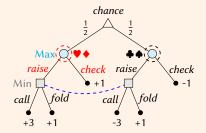
Toy Poker : A random suit from $\mathbf{\Psi}, \mathbf{\Phi}, \mathbf{\Phi}, \mathbf{\Phi}$ is privately dealt to Max



 $\begin{aligned} \text{Actions} : A_{\text{Max}} &= \{ \textit{raise}, \textit{check}, \textit{raise}, \textit{check} \}, A_{\text{Min}} &= \{ \textit{call}, \textit{fold} \} \\ \text{Information sets} : \mathcal{I}_{\text{Max}} &= \{ --, -- \}, \mathcal{I}_{\text{Min}} &= \{ -- \} \end{aligned}$

Player nodes : $Max \bigcirc$ and $Min \square$ Random node : Chance \triangle

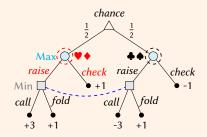
Toy Poker : A random suit from \P , \blacklozenge , \diamondsuit , \blacklozenge is privately dealt to Max



Actions : $A_{Max} = \{ raise, check, raise, check \}, A_{Min} = \{ call, fold \}$ Information sets : $\mathcal{I}_{Max} = \{ --, -- \}, \mathcal{I}_{Min} = \{ -- \}$ Zero-sum : Min pays Max at leaves •

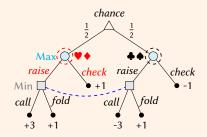
Strategies

Strategies



Behavioral Strategies : Choose actions randomly at information set. $\mathcal{I} \mapsto \Delta(A)$

Strategies



Behavioral Strategies : Choose actions randomly at information set. $\mathcal{I} \mapsto \Delta(A)$

 σ : Max raises and checks with probability $\frac{1}{2}$ at $\P \blacklozenge$ and always raises at $\clubsuit \blacklozenge$ τ : Min always folds

Expected Payoff : $E(\sigma, \tau)$

Maxmin value

maxmin =
$$\max_{\sigma} \min_{\tau} E(\sigma, \tau)$$

Maxmin value

maxmin =
$$\max_{\sigma} \min_{\tau} E(\sigma, \tau)$$

Decision Problem

Maxmin value

maxmin =
$$\max_{\sigma} \min_{\tau} E(\sigma, \tau)$$

Decision Problem

Two-player : Given a two-player game and threshold λ , is the maxmin value over behavioral strategies at least λ ?

One-player : Given a one-player game and thereshold λ , is the maximum value over behavioral strategies at least λ ?

Maxmin value

maxmin =
$$\max_{\sigma} \min_{\tau} E(\sigma, \tau)$$

Decision Problem

Two-player : Given a two-player game and threshold λ , is the maxmin value over behavioral strategies at least λ ?

One-player : Given a one-player game and thereshold λ , is the maximum value over behavioral strategies at least λ ?

Complexity depends on player's recall.

Perfect recall

Perfect recall

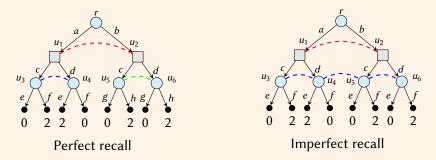
Player remembers his own past history of actions

$$inf(u) = inf(v) \implies hist_{Max}(u) = hist_{Max}(v)$$

Perfect recall

Player remembers his own past history of actions

$$inf(u) = inf(v) \implies hist_{Max}(u) = hist_{Max}(v)$$



No information set across distinct action sub-trees

Loss of perfect recall \rightarrow distinct histories split at some past info set with distinct actions

Loss of perfect recall \rightarrow distinct histories split at some past info set with distinct actions

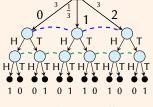
 $inf(u) = inf(v) \implies$

 $hist_{Max}(u) = hist_{Max}(v)$

 $hist_{Max}(u) = sa_1s_1$, $hist_{Max}(v) = sa_2s_2$ where a_1, a_2 action at same info set

Loss of perfect recall \rightarrow distinct histories split at some past info set with distinct actions

 $inf(u) = inf(v) \implies$ $hist_{Max}(u) = hist_{Max}(v)$ or $hist_{Max}(u) = sa_1s_1, hist_{Max}(v) = sa_2s_2 \text{ where } a_1, a_2 \text{ action at same info set}$



 3
 3
 1
 2

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T
 H
 T

 H
 T
 H
 T

A-loss recall

Not A-loss recall

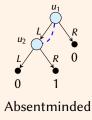
No information set across sub-trees rooted at nodes with distinct information but same history

Absentmindedness

Absentmindedness

Forgets if the same decision point was seen before

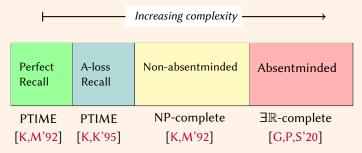
 $\exists u, v, inf(u) = inf(v) \text{ and } hist_{Max}(u) <_{prefix} hist_{Max}(v)$



Previous Complexity Picture

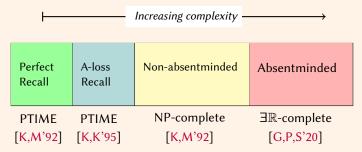
	A-loss Recall	Non-absentminded	Absentminded
--	------------------	------------------	--------------

Previous Complexity Picture



Complexity of one-player games

Previous Complexity Picture



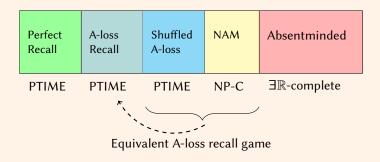
Complexity of one-player games

Our work : Finer complexity picture for non-absent minded games $\hfill\square$

Our contribution

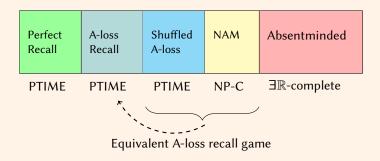
Perfect Recall	A-loss Recall	Shuffled A-loss	NAM	Absentminded
PTIME	E PTIME	PTIME	NP-C	$\exists \mathbb{R} ext{-complete}$

Our contribution



Every non-absentminded game can be transformed into equivalent A-loss recall game.

Our contribution



Every non-absentminded game can be transformed into equivalent A-loss recall game.

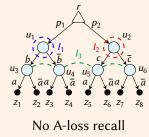
Caveat : Exponential blow-up in size

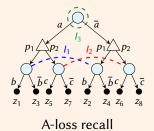
Core idea

Assigning variables to actions for a behavioral strategy gives symbolic payoff polynomial

Games are equivalent if symbolic polynomials are same

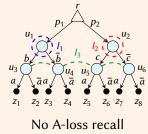
Shuffled A-loss Recall

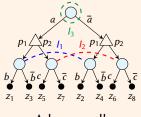




Actions in histories are permuted

Shuffled A-loss Recall





A-loss recall

Actions in histories are permuted

Theorem

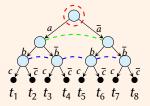
Shuffled A-loss recall can be detected and computed in PTIME

A-loss recall span

A-loss recall span

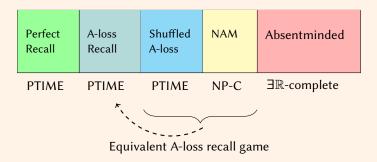
Leaf polynomials of input game are linear combinations of leaf polynomials of transformed game

Set of polynomials $\{x_a, 1 - x_a\} \times \{x_b, 1 - x_b\} \times \{x_c, 1 - x_c\}$ forms basis of vector space of all multilinear polynomials over $\{x_a, x_b, x_c\}$



Add suitable payoffs t_i to construct equivalent game

Summary



Also extends to two-player games where $\ensuremath{\mathsf{Max}}$ has perfect recall and $\ensuremath{\mathsf{Min}}$ is non-absentminded

Future directions

- Implications on practice
- Complexity of computing minimal A-loss recall Span

Thank You