Accelerating Markov Chain Model Checking

Good-for-Games Meets Unambiguous Automata

Yong Li Soumyajit Paul Sven Schewe Qiyi Tang Chinese Academy of Sciences University of Liverpool University of Liverpool University of Liverpool

Probabilistic Verification

Probabilistic Verification

Guarantees for autonomous systems in uncertain environment

- ► Autonomous vehicles
- Communication protocols
- ► Secure systems
- ▶ Planning and synthesis
- **.**.

Markov Chain Verification

Input : Finite Markov chain $\mathcal M$ and ω -regular specification φ

$$\Pr(\mathcal{M} \vDash \varphi)$$
?

Theory

Specification	Complexity
LTL	PSPACE-complete [Vardi'85,CY'95]
DBA	PTIME
UBA	PTIME [BKKKMW'16]
NBA	PSPACE-complete [Vardi'85,CY'95]

Theory

Specification	Complexity
LTL	PSPACE-complete [Vardi'85,CY'95]
DBA	PTIME
UBA	PTIME [BKKKMW'16]
NBA	PSPACE-complete [Vardi'85,CY'95]

Practice

Tools: PRISM, STORM, EPMC, MoChiBA, etc

Only PRISM supports MC model checking against UBA specifications as input

Theory

Specification	Complexity
LTL	PSPACE-complete [Vardi'85,CY'95]
DBA	PTIME
UBA	PTIME [BKKKMW'16]
NBA	PSPACE-complete [Vardi'85,CY'95]

Practice

Tools: PRISM, STORM, EPMC, MoChiBA, etc

Only PRISM supports MC model checking against UBA specifications as input

This Work

- New PTIME algorithm for MC model checking for UBA specification
- ► Outperforms PRISM for large inputs with provably exponential improvement in some cases

Labelled Markov Chain

Labelled Markov Chain

Non-deterministic Buchi Automata

Transition based acceptance

$$\mathcal{L} = aa^*b^\omega$$

Labelled Markov Chain

Non-deterministic Buchi Automata

Transition based acceptance

$$\mathcal{L}=aa^*b^\omega$$

DBA: Transitions are deterministic

UBA: Every word has at most one accepting run

Setting

Input : Finite Markov chain $\mathcal M$ and UBA $\mathcal U$

$$\mathsf{Pr}_{\mathcal{M}}(\mathcal{L}(\mathcal{U}))$$
 ?

Classic Algorithm for DBA

Pr (Reach bottom SCCs containing accepting transitions)Standard steady state linear equation system + Constraints for BSCCs

Classic Algorithm for DBA

Pr (Reach bottom SCCs containing accepting transitions)
Standard steady state linear equation system + Constraints for BSCCs

Next: GfG Automata

Non-determinism resolved using history dependent strategy [Henzinger, Pitermen'06]

Non-determinism resolved using history dependent strategy [Henzinger, Pitermen'06]

Has to go s_2 after some a^k

 $a^{k+1}b^{\omega}$ is not accepted

Non-example

Non-determinism resolved using history dependent strategy [Henzinger, Pitermen'06]

Has to go s_2 after some a^k

 $a^{k+1}b^{\omega}$ is not accepted

Non-example

Application in reactive synthesis

Non-determinism resolved using history dependent strategy [Henzinger, Pitermen'06]

Has to go s_2 after some a^k $a^{k+1}b^{\omega}$ is not accepted

Non-example

Application in reactive synthesis

Good-for-Games co-Buchi automata can be minimized in PTIME [Abu Radi, Kupferman'21]

Non-determinism resolved using history dependent strategy [Henzinger, Pitermen'06]

Has to go s_2 after some a^k $a^{k+1}b^{\omega}$ is not accepted

Non-example

Application in reactive synthesis

Good-for-Games co-Buchi automata can be minimized in PTIME [Abu Radi, Kupferman'21]

Next : Our Algorithm on DBA

Our algorithm on DBA

0/1 Probabilistic Buchi automata : Every word w is accepted with probability 0 or 1.

Algorithm for UBA from [BKKKMW'16]

Standard linear equation system + Constraints for "special" SCCs

Algorithm for UBA from [BKKKMW'16]

Standard linear equation system + Constraints for "special" SCCs

Next : Our algorithm

Our Algorithm

Standard linear equation system + Constraints for special components

Exponential Gain

Theorem

There is a family of UBA $\{U_n\}_n$, where the final GfG NCAs \mathcal{G}_n are exponentially smaller.

Exponential Gain

Theorem

There is a family of UBA $\{U_n\}_n$, where the final GfG NCAs \mathcal{G}_n are exponentially smaller.

n	PRISM UBA [BKKKMW'16]		Our Algorithm			
UBA size		Product size	GfG size	Product size	t_{tr}	
3	7	100	5	100	0.052 s	
4	15	200	6	120	0.021 s	
5	31	400	7	140	0.077 s	
6	63	800	8	160	0.059 s	
7	127	1600	9	180	0.117 s	
8	255	3200	10	200	0.102 s	

Markov chain size: 20

More Benchmarks

Significant reduction in number of states

Complete UBAs			Nearly-complete UBAs				
k	UBA	GfG	t_{tr}	k	UBA	GfG	t _{tr}
5	193	96	0.121 s	5	193	94	0.122 s
6	449	192	0.126 s	6	449	190	0.126 s
7	1025	384	0.215 s	7	1025	382	0.251 s
8	2305	768	1.119 s	8	2305	766	1.070 s
9	5121	1536	8.160 s	9	5121	1534	8.179 s

Benchmarks from [BKKKMW'16]

Practice: More efficient algorithm for Markov chain model checking against UBA specifications

Conceptual: First synergy between UBA and GFG automata

Practice: More efficient algorithm for Markov chain model checking against UBA specifications

Conceptual: First synergy between UBA and GFG automata

Current and Future work

Practice: More efficient algorithm for Markov chain model checking against UBA specifications

Conceptual: First synergy between UBA and GFG automata

Current and Future work

► Faster implementation

Practice: More efficient algorithm for Markov chain model checking against UBA specifications

Conceptual: First synergy between UBA and GFG automata

Current and Future work

- ► Faster implementation
- For general NBA specifications, do exact model checking using stochastically resolvable NBA[1] or approximative verification using λ -PBA[2] instead of 0/1-PBA
- [1] Resolving Non-determinism with Randomness [HPT] (To appear in MFCS'25)
- [2] Resolving Non-determinism by Chance [PPSTTY](To appear in CONCUR'25)

Thank You